listed in Table 3. All have axes of approximately 7 Å and 9 Å with a *c* axis of 10, 20 or 40 Å depending upon whether there are 2, 4 or 8 molecules per unit cell, respectively. For those in monoclinic space groups, the β angle is never far from 90°.

L17 also has an axis of 7 Å but it is chemically quite different from the other compounds discussed above, and consequently its b and c axes are different.

The author is indebted to Mr R.G. Howells of the Department of Physics, University College, Cardiff,

and to Professor D. Rogers of the Department of Chemical Crystallography, Imperial College, London for their advice, guidance and encouragement during the performance of this work.

References

GRAHAM, J. D. P. (1962). In *Progress in Medicinal Chemistry*, edited by G. P. ELLIS and G. B. WEST, 1st ed., Vol. 2, p. 132. London: Butterworths.

WULFF, P. & HEIGL, A. (1931). Z. Phys. Chem. A 153, 187.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1968). B24, 595

The crystal structure of tris-(2-dimethylaminoethyl)amine nickel(II) and copper(II) bromides. By M. DI VAIRA and P. L. ORIOLI, Istituto di Chimica Generale e Inorganica, Università di Firenze, Florence, Italy

(Received 19 October 1967)

The crystal structures of Ni(Me₆tren)Br₂ and Cu(Me₆tren)Br₂ [Me₆tren = N{CH₂CH₂N(CH₃)₂}] have been determined by three-dimensional X-ray analysis and refined to final *R* values of 7.7% and 6.2% respectively. Crystals of the two complexes are cubic, space group *P*₂, $a = 12 \cdot 123 \pm 0.002$ and $a = 12 \cdot 137 \pm 0.003$ Å for the nickel(II) and copper(II) compounds respectively, with four formula units per unit cell. The two structures consist of M(Me₆tren)Br⁺ and Br⁻ ions arranged in a distorted NaCl type arrangement. The coordination polyhedron about the metal atoms is a trigonal bipyramid with *C*₃ crystallographic symmetry. The structure is essentially identical with that of the corresponding cobalt compound.

Ciampolini & Nardi (1966a, b) have reported the preparation and the chemical properties of a series of five-coordinated high-spin complexes with general formula

$M^{II}(Me_6tren)X_2$,

where $M^{II} = Cr$, Mn, Fe, Co, Ni, Cu, Zn and Me₆tren = tris-(2-dimethylaminoethyl)amine, N{CH₂CH₂N(CH₃)₂}₃ and X = Cl, Br, I, NO₃ and ClO₄.

As a part of an X-ray structural investigation on the isomorphous series of the complex bromides, we have already reported in detail the structure of the cobalt(II) complex (Di Vaira & Orioli, 1967). We wish now to report the results of the X-ray analysis of the nickel(II) and copper(II) complexes. Since the experimental procedure has closely followed the lines of the structure determination of the cobalt(II) analogue only some significant different points will be mentioned here.

Crystals of the two compounds, kindly supplied by Dr Ciampolini, are tetrahedral in shape and belong to the space group $P2_13$. Cell dimensions, determined from Weissenberg photographs with the NaCl rotation pattern superimposed, are: $a=12\cdot123\pm0\cdot002$ Å for the nickel(II) complex and $a=12\cdot137\pm0\cdot003$ Å for the copper(II) complex; Z=4. For Cu K α radiation $\mu=73\cdot8$ and $75\cdot6$ cm⁻¹ for the nickel(II) and copper(II) complexes respectively. The crystals selected for data collection had the shape of regular tetrahedra with edge about 0.25 mm.

A total of 443 independent reflexions were measured for the nickel(II) compound and 540 for the copper(II) compound.

Initial parameters for the atoms were taken from the last isotropic least-squares cycle of the structure of the cobalt(II) complex. After a few cycles of least-squares refinement with anisotropic temperature factors the final R values were 0.077 and 0.062 for the nickel(II) and copper(II) complexes respectively. Reduction of the intensities, structure factor calculations and least-squares refinement were performed at the C.N.U.C.E. in Pisa with programs written or adapted for the IBM 7090 by Stewart (1964). Table 1 reports the final atomic parameters and the temperature factors with their estimated standard deviations, as calculated from the diagonal terms of the inverse least squares matrix.

Although a detailed comparison of the results will be postponed until the structures of all the members of the series are known, a few points should be mentioned in this connexion.

As expected from the isomorphism with the cobalt(II) complex the structure of the two complexes consists of $M(Me_6tren)Br^+$ and Br^- ions arranged in a distorted NaCl type arrangement. In the complex cation the metal atom is five-coordinated, the ligands being distributed at the apices of a trigonal bipyramid with C_3 crystallographic symmetry. The symmetry of the coordination polyhedron alone is $C_{3\nu}$. In both cases the metal atom lies below the equatorial plane of the three nitrogen atoms, the perpendicular distances from this plane being 0.22 Å for the nickel(II) complex and 0.20 for the copper(II) one.

Bond lengths and angles in the cation with their estimated standard deviations are reported in Table 2. In the copper(II)

Fig. 1. A perspective drawing of the M(Me₆tren)Br⁺ ion.

Table 1. Positional parameters, temperature factors and their estimated standard deviations

		Anisotro	pic thermal fac	tors are of the f	orm: exp (-	$\Sigma \Sigma h_i$	hjβij).							
		Es	timated standar	rd deviations ar	e given in pa	renthesis.								
	Positional	parameters $\times 10^{10}$)4		Thermal parameters × 104									
	x/a	y/b	z/c	β_{11} Ni(Me ₆ tren)E	β_{22} Br ₂	β_{33}	β_{12}	β_{13}	β ₂₃					
Ni Br(1)	2320(2) 1145(1)	2320(2) 1145(1)	2320(2) 1145(1)	52(1) 54(1)	52(1) 54(1)	52(1) 54(1)	-1(1)	-1(1)	-1(1)					
Br(2)	8169(1)	8169(1)	8169(1)	63(1) 50(10)	63(1) 60(10)	63(1)	-3(1) 4(1)	- 3(1) 4(1)	4(1)					
N(1) N(2)	2752(11)	1052(11)	3463(10)	58(9)	38(9)	56(8)	6(8) 2(9)	-16(7)	6(8) 0(8)					
C(1) C(2)	3633(12) 3771(12)	2663(13) 1476(11)	4321(12) 4015(12)	45(10) 38(9)	48(10) 48(8)	34(9) 32(9)	15(8) 5(8)	-5(8) -26(9)	2(9) 13(7)					
C(3) C(4)	2946(14) 1868(16)	- 32(15) 906(15)	2959(14) 4249(14)	65(15) 50(12)	45(13) 53(13)	109(14) 80(11)	31(10) - 17(11)	-2(11) -12(11)	3(10) 2(10)					
				Cu(Me₀tren)H	Br ₂									
Cu Br(1)	2327(2) 1189(2)	2327(2) 1189(2)	2327(2) 1189(2)	53(1) 61(1)	53(1) 61(1)	53(1) 61(1)	-3(1) -8(1)	-3(1) -8(1)	-3(1) -8(1)					
Br(2) N(1)	8184(2) 3311(11)	8184(2) 3311(11)	8184(2) 3311(11)	70(1) 46(9)	70(1) 46(9)	70(1) 46(9)	6(1) 11(7)	6(1) 11(7)	6(1) 11(7)					
N(2) C(1)	2741(13) 3604(16)	1049(12) 2676(14)	3473(13) 4298(16)	55(10) 64(13)	51(10) 45(10)	62(10) 61(13)	-7(9) -16(10)	- 10(9) 7(11)	11(9) 1(10)					
C(2) C(3)	3759(14) 2961(17)	-64(12)	4033(13) 2977(19)	46(10) 74(14)	53(11) 31(8)	58(11) 115(19)	0(9) 15(9)	-10(9) -17(14)	16(9) 4(10)					
C(4)	18/2(13)	919(15)	4304(15)	42(9)	76(13)	60(11)	-14(10)	5(9)	25(10)					

Table 2. Distances and angles in the M^{II}(Me6tren)Br⁺ ion with their estimated standard deviations

Primes refer to atoms related to reference atom by the threefold axis

				corora anno				
	Distan	ces (A)		Angles (°)				
5	M = Ni	M = Cu		M = Ni	M = Cu			
M-Br(1)	2.467(2)	2.393(3)	N(1)-M-N(2)	84·2(5)	84.7(5)			
M–N(1)	2.10(1)	2.07(1)	N(2)-M-Br(1)	95.8(3)	95.3(4)			
M-N(2)	$2 \cdot 13(1)$	2.14(1)	N(2) - M - N(2')	119.0(5)	119.1(6)			
N(1)-C(1)	1.50(2)	1.47(2)	M - N(1) - C(1)	107.7(9)	108(1)			
C(1)-C(2)	1.49(2)	1.52(2)	C(1) - N(1) - C(1')	111(1)	111(1)			
C(2) - N(2)	1.50(2)	1.49(2)	N(1)-C(1)-C(2)	109(1)	111(1)			
N(2)-C(3)	1.47(2)	1.50(2)	C(1)-C(2)-N(2)	110(1)	108(1)			
N(2)-C(4)	1.44(2)	1.47(2)	C(2)-N(2)-C(3)	111(1)	109(1)			
Br(1) - C(3)	3.41(2)	3.41(2)	C(2)-N(2)-C(4)	111(1)	108(1)			
Br(1) - C(4)	3.87(2)	3.88(2)	C(3)-N(2)-C(4)	106(1)	108(1)			
Br(1)-N(2)	3.42(1)	3.36(1)	M - N(2) - C(3)	114(1)	116(1)			
N(2)-N(2')	3.68(2)	3.70(2)	M - N(2) - C(4)	109(1)	111(1)			
			M - N(2) - C(2)	104(1)	104(1)			

Table 3. Observed and calculated structure factors for Ni(Me6tren)Br2

Columns are: H index, 10 F_o , 10 $|F_c|$. Unobserved reflexions are marked by an asterisk; reflexions considered affected by extinction are marked by E.

	н,0,0			н,9,0			H,4,1		45	136+ 129+	36 91	10 11	255 200+	286 109	4 5	240. 311	120 344	6 7	153+ 179	86 213
a ó	749 239•	880 220	1	905E 330	1100	23	1060 334	1173 306	6	192 104+	205	12	156	185	6 7	491 242+	¥74 107		H, 14, 4	
8	323	364	3	330 e 343	164	4 5	399 845	416 838	8	82•	87		н,10,2		8 9	235+ 332	163 333	4	182	187
12	342*	16	5	343+	39	6	542	485		H, 14, 1	1	3	397 277•	390 200	10 11	199+ 179	81 182		H. 5. 5	
	H.1.0		7	368	304	8	510	471 272	23	125	114	5	379 279	357	12	192	229	5	242	208
3	219	219	9 10	325+ 315	23	10	278	260	4 5	226	251	7	303 253•	288 193		н, 10, 3			H. 6.5	
÷.	789E	1045	11	263	187	12	156	171	6	178	165	9 10	232+	47	3	380	433 406	5	346	336
ş	241+	219		H.10.0	,	14	130	148		H,15,1	1	ii	163+	146	5	248	214	6	536	537 368
8	515 326	563	1	551	627		H • 5•1		23	111	97 124		н,11,2		7	380 219•	395 111	8	297 236	273 201
10	340+ 397	198	23	342+ 564	90 638	23	270	262 1146	•	H.2.2		3	314 274+	351 127	9 10	255	234	10 11	222+	149
12	347 314+	298	ŭ 5	354 349+	260	4	1008	1020	3	823	946	5	285 260+	239	11	133+	108	12	174+	70
14	269.	19	67	346+ 338+	220 147	ŝ	808 341	800 307	4 5	937 336	1037 313	7	246+ 227+	66 163		н,11,3			H.7.5	
	н,2,0		8	322 • 303	64 232	8	315 397	271 390	6 7	1049 368	1185 375	.9 10	212 166	192	3	310 253	347 266	5	336	317
3	284 173•	341 111	10	263+ 215+	192 51	10 11	238 275	270 253	8	417 266	444 191		н,12,2		5	238 225•	265 189	6 7	326 2340	350 86
4	419 291	517 218		H,11,0)	12 13	148+ 129+	125	10 11	641 282	729 284	3	290	309	7 8	233 197	246 195	8	507 248	507 264
7	274+	134	1	446	483	14	127	137	12 13	267• 243•	151 218	5	262 272	187 287	10	172 133+	133 138	10 11	211• 191	151 183
10	544 3420	609 91	23	383 396	356 361		H.6.1		14 15	204+ 142+	135	6 7	266 244	269 244		н,12,3		12	169	229
11	355 339•	283 193	5	346* 340*	38 1	23	630 1009	655 1028		H,3,2		9	189+ 153+	77	3	229.	177		H.8.5	
13 14	310+ 263+	99 52	6 7	363 314•	331	5	535 594	512 592	3	432	432		н,13,2		5	222+ 311	65 349	6	272	282 611
	н,3,0		8	291+ 259+	27 11	7	145• 476	436	5	701 850	775 907	3	250	224	6 7	204 183•	204 140	8	233• 227•	161 106
1	687	823	10	215+	129	8 9	503 164•	463 114	6 7	652 454	699 433	5	275 213+	296 109	8 9	209 158	228 176	10	215+ 206	124 218
23	827E 430	1089 439		H, 12, ()	10	163• 202	119	8	612 557	648	7	195+	24		н,13,3		11	169 123+	191 88
5	481 582	568 645	12	341+ 339+	27 234	12 13	143	177	10	276+ 276+	240	8	170	168	3	203.	179		H.9.5	
6 8	1037E 313	1291 301	3	334 • 327 •	225 201	14	84+	15	12	268 236+	227	_	H,14,2		5	196.	78 59	5	340	338
10	560 345•	21	6	491 299+	518 188		H.7.1		15	1950	127	4	198	95	٥	104+	159	î	282	271
11 12	348+ 380	168 340	8	293	253	3	148	130 230		H,4,2		6	203	158		H, 14, 3		9	215•	109
13 14	302+ 257	145	9	234+	146	5	370	880 356	3	905E	1046		H.15.2		3	1040	169	11	137•	96
	H,4,0			H+13+()	6 7	357 162	325 140	5	770 488	829 459	3	203	216		H, k, k			н, 10, 5	
1	571	645	1 2	314+ 315	122 230	8	196	207 200	6 7	267 562	288 543		н,3,3		4	1009	980	5	365	384
2 3	686E 515	922 561	3	419 291•	481 169	10 11	287 162	308 159	8 9	414 275	383 214	3	824	878		H, 5,4		°7	222+ 211+	72
5	275 272•	316 130	5	275+ 253+	159 53	12 13	132	125 117	10	282 462	224 507		H,4,3		4 5	191 432	172 382	8	195• 175	81 185
8	296• 318•	67 161	7	253	227		H,8,1		12 13	257• 227•	200	3	721	772	6 7	526	490 460	10	141+	**
10	¥16 ¥21	439		H, 14, ()	2	685	738	14	182+	107	5	253 328	248 286	8	651 383	658 392		H,11,5	
13	342	356	2	263.	94		245	245		H#5#2		ĩ	599	586	11	265	262	è	203	175
14	241	251	1	2530	198	6	472	285		762	812	9	584	593	13	206• 172•	47	8	187•	178
	H+5+V		6	182+	111	8	304	264	6	336	336	11	243	244		H, 6, 4		9	1570	109
2	412	448		H,15,()	10	151+	79	8	301	277	13	194+	175	2	656	639		H, 12, 5	••
, i	265	216	1	2010	151	12	155	150	10	330	325		н,5,3		ě	337	299	6	1740	123
67	\$71	461	3	175-	143		H-9-1	150	12	307	339	3	317 1820	355	8	243+	142	8	125	126
ŝ	329• 389	255		H,1,1		,	331	321	14	203	225	5	831	815	10	278	286		H,13,5	
10	349+	136	23	801 830	840	3	255 118	235		H.6,2		7	468	433	12	195	202	5	167	186
12 13	371 275+	365	5	386 774	383 835	5	318	296	3	489 501	456 530	9 10	364	352		H.Z.h			H,6,6	
14	215•	168	6	598 1373	619	7	164+ 379	71	5	238	149	11	238	244 194		418	411	6	403	463
	H.0.0		8 9	389 610	403 661	9 10	306 397	307 374	78	523 514	542 520	13	181+	74	5	259 631	235		н,7,6	
1 2	659 252	744 233	10	161+ 164+	89 16	11	121+ 95+	95 51	10	363 312	376 281		H#6#3		7 8	409 244+	364 133	67	200 183•	193
3	263 299	237 268	12 13	208 205	205 200		н,10,	1	11 12	296 275	291 286	3	671 521	695 496	10	290 227•	283 69	8 9	211 172+	236 98
5	560	556 700	16 15	126 • 93 •	72 72	2	162+	134	13 14	195• 166	107 141	5	605 397	578 382	11	217 176	242 196	10	157= 136+	35 173
6	324 • 726	184 799		H,2,1		3	280	265		H,7,2		8	535	483	13	155	178		H.8.6	
10	348.	234	2	963	1037	6	536	353 487	3	269	267	10	244	88		H,8,4		6	287	357
12	299.	113		348	331	8	440	458	5	773	826	12	204	193	5	449	444	8	173.	52
13		312	6	257	240	10	125	135	ĩ	318	296	13	1/4	207	Ŷ	399	390	10	1430	244
	H#7 #0		8	142+	41		152	158	9	628	622	-	H, 7, 5		9	244	254	11	151	234
2	290	294	10	291	286		145.	'	11	280	275	1	395	404	ii	185.	157		H, Y, O	
-	488	503	12	173	219	3	307	310	13	170+	50	6	246	247	12	150	120	î	266	327
ş	513	521	14	189	229	5	223	210		H.8.2		8	349	312		n, y, 4	20.0	ş	145+	121
8	407	341	.,	N.3.1		7	150	135	3	468	429	10	281	307	5	290	307	ii	88	151
10	542	531	•	1005			121-	52	5	265+	118	12	183+	55	7	246.	134		н,10,6	
		110	3	1383	1436	10	230	235	Ŷ	620	687		н,8,3		9	230-214-	210	6	253	324
,	1.1010	10A	5	624	659		142	' 147	9	285	263	3	722 •	86	10	208	262	8	160	225 88
2	300+	160	7	134+	76	3	265	258	11	235	200	5	545	534		H. 10.4		10	91e	197 130
5	362	310	9 10	409	400	5	169	182	12	1044	22	7	268	248	4	374	409		H,11,6	
67	675 347+	720	11	349	344	Ĩ	130+	75	1	440	L 22	9 10	235	168		H, 12,4		¢	152	152
8	703 388	755	13 14	171	191	ÿ	95+	26	4 5	492	491	11	194.	88	8	147+	143	é	144	211
10 11	322 . 291 .	8	15	116	144		н,13,	1	57	278+	71	12	170 H.u.I	***		H.13,4			H, 12,6	
12	250	219				23	238	287 192	8	285	248		277	280	4	185+	59	6	1240	57
						-		-		-		-			-					

complex, the average Cu-N distance of $2\cdot10$ Å and the N(2)-Cu-N(1) angle of $84\cdot7^{\circ}$ are in good agreement with the analogous values of the structure of

[(tren) (SCN)Cu]SCN

(2.07 Å and 84.1°; Jain & Lingafelter, 1967).

The value of the N(2)-Cu-N(1) angle is also in agreement with those found in several ethylenediamine metal chelates, and seems essentially imposed by the stereochemistry of the ligand.

For the nickel(II) complex there are no analogous structures available for comparison. The average Ni–N distance

Table 4. Observed and calculated structure factors for Cu(Me6tren)Br2

Columns are: K index, 10 F_o , 10 $|F_c|$. Reflexions considered affected by extinction are marked by E.

	0 ,K, 0			9,K,O		3	699 P21	746	4	-)23 362	1023	4	451 339	446 249	9 10	318 222	312 211	67	106 231	98 230
4	673E	852	1	311	308	5	824	819	67	1101	1219	7	330	332 195	11	157 88	156 172	9	169	213
10.	237	240	3	596	643	Ť	370	370	8	364	360	9	118	133		10.6.3			12,8,6	
14	231	215	5	197	187	9	287	261	10	692	766		12.K)2			160	172	5	141	147
	1.8.0		10	226	196	19	282	265	12	148	162	3	262	282	5	266	232	ž	129	134
3	757 504	754 537		10.44.0	,	12 14	149	144	13	150	175	5	343	335	é	148	128		173	114
5	981	1011	1	252	255		6.K.]			3.8.2		6 7	192 231	186 237	10	111 153	100 166		13.8.4	
ž	166	127	÷	354	327	,	312	303		×18	1 2 A		13.8.2			11.6.3		6 7	114	143 126
ş	1000	1103	ĩ	565	529	3	296	302	1	884	1005		124	122		119	317		16.8.6	
11	588 520	549	Ÿ	372	351	5	777	729	6	335	309	4	134	151	ş	286	258			
	2.8.7			11 ₈ K ₈ C)	7	424 454	393 453	8	288 414	283 397	5	187	202	Ŷ	208	182	2	80	104
,	81455	1120	1	328	348	30	318	312 568	12	336 334	366		14.6.2		10	197 145	217 139		5,K,5	
3	955	1069	3	237	186	12	239	253	iì	336	349		122	122		12.8.3		5	262	257
5	517	551	5	349	297	14	137	137	13	225	227	5	171	176		121	160		6,K,5	
Ŷ	224	287	ĩ	203	200		7.×.1		15		205	•	120	105	6	144	151	5	355	335
11	277 274	273 235	8 9	119	124	2	523	504		4,8,2			15,8,2		9	132	148	7	252	246
15	204	213		12.6.0	,	3	213 737	183 698	3	728 854	800 906	3	84	109		13,K,3		8	599 408	580 374
	3,K,0		•	228	. 182	5	343	322	5	805 564	708 564		3.6.3			192	193	11	157 123	182 114
1	141	149	2	241	227	.8	226	215	Ť	482	451	3	842	990 765	6	168	171		7.8.5	
3	472	454	4	249	233	12	135	116	9	450	437	5	278	331	1				1000	
5	382	464 409	5	333 122	337		8,K,1		10	216	206	?	726	722		14,8,5		6	402	386
67	248	256 450	7	179	204	3	299	275	13	231	256	10	361 359	339 379		107	130	8	20% 266	189 252
8	521	526		13 ₈ K ₈ 0	Ù	4	400	370	•	5,K,2		11	238	254 140		****		11	141	180 210
10	656	698	1	166	189	ě	447	426	3	801	832	13	150	156	4	927	915		8-8-5	
12	214	213		272	263	8	239	234	5	379	385			131	6	567	551			350
15	132	184	٥	512	331	10	486	476	î	715	703		49893		8	765	734	6	382	366
	4.8.2			14.K.)	11	288 T46	271	10	359 332	345	5	255	247 182	10	257 333	258 332	4	400 140	145
1	456E	1116	3	286 164	294 164		9.K.1		11	235	204	\$	522 377	510 394	12	271 96	313 122	11	159 96	178 116
3	439	458	5	178	196	7	673	718	13	163	176	8 10	437 423	450		5.8.4			9.8.5	
ŝ	257	236	•			3	349	336				ij	252	268		206	34.0		207	304
7	420	407	_			5	339	289	_		_	13	101	110	6	509	472	6	257	269
89	333 249	300 229	4	478 410	735	Ŷ	209 234	175	3	720 351	707 351	14	106	102	8	203 390	202 366	7	220 148	220 147
12.	280 204	242 198	5	734	813 564	8 9.	222	205 234	5	423 774	411 782		5.K.3		10	354 411	365 408		10.8.5	
	5.8.0		7	1112E 389	1432	10	154	140	10	500 298	467	4	229 788	266	11	244	257	5	376	302.
,	789	862	9	662. 120	673		10.4.1	,	12	179	196	ě	510	511		A. V. N		7	148	157
3	609	610	13	189	186			•			140	8	517	492				0	203	204
5	1094	1155		2, K, 1		3	247	239	-	79892		10	165	382 159	6	288	264		11+6+5	
î	584	593	2	899	1040	5	257	284	- 4	482	454	11	277 304	277 309	8	620 144	590 138	7	240 145	252 153
12	212	375 206	4	1263E 954E	1514	9	220	199 377	5	522	529 437		6.K.3		10	148 225	138 228	8	130	127
14	287	282	5	270 540	277 573	10	124 231	242	7	297 613	281		.78	b76	11	209	208 175		12,K,5	
	6,K,^		8	757	743		11.8.		9	168	139	5	325	253				7	205	228
23	196	144	15	162	159	,	6 A R		ii	126	105	7	301	280			204		13.K.5	
5	604	549	13	200	237	3	330	320		201	240	ŝ	425	\$10	6	390	390	5	107	111
ĩ	468	419	14	133	110	5	332	3.9	_	E.K.Z		ii ii	224	229	8	493	389	٥	105	147
10	300	260		3.8.1		ŝ	231	135	- 3 - 4	648 433	668 420	12	181	175	10	314 151	319 175		6,K,6	
12	352	326 138	23	838 12395	838 1521	10	151	149	5	326 501	307 477		7.K.3			8.4.4		6	476	478
13	127	138 114	4i 5	345 1087	305 1198		12,K,	1	7	203 216	151 201		532	530	5	608	583		7,K,6	
	7.8.7		67	984	1000	2	173	202	9	284	256	5	463	471	Ť	202	167	6	272	249
,	595	A 3.8	8	710	740	õ	203	174	15		137	7	186	185	, š	142	120	1í	249	300
ż	267	258	10	269	250		13,8,1	1		¥9892		ŝ	117	124	ii	144	165		8,8,6	
5	366	349	12	252	249	2	352	258	4	228	194	11	175	408 180	12	146	181	6	308	282
ŝ	304	289	13	126	118	3	170	163 365	5	242 337	244 329	12	151	152 96		9.K.¥		79	265 169	244 158
12	235	210		4.K.I		78	29'92 84	1.0	7	580 339	558 313		8.4.3		5	երեր 1861	428			
	8,K,:		2	387	376		14.8.1		12	186 158	154	s	\$16	396	7	364	368	8	172	144
1	469	431	3	1154	1222	,	130	182		10-4		\$	428	429	10	100	103	ļŏ	159	166
3	439	442	5	880	920	4	147-	168	,	.974	· · ·	8	159	166		10	~	••	157	203
ŝ	330	329	ĭ	627	614	2				281	275	ņ	165	159	~	10,6,4			10.8.6	
ĩ	310	274	9	334	331	~	15gKg		6	328 323	288	12	147	158	5	353 242	554 218	6	362	341
9	513 335	295	11	35J 338	333 331	23	168- 86	170	• 9	348. 259	310 244		9,K,3		8 10	166 119	166 124		11,8,6	
10 12	157 226	133 222	• 14	239	265		2.8.2		11	133	134	4	556	548 315	ü	124	196	8	191	230
				5,K,1		,	9726	1154		11,K,;	?	é	274	243		11,K,A				
			2	525	568	3	783	853	3	163	180	8	148	144	5	263	250			

of 2.11 Å is somewhat smaller than the value of 2.16 Å found in the octahedral Ni(tren) (SCN)₂ (Rasmussen, 1959).

In the case of copper(II) trigonal bipyramidal stereochemistries have already been found by X-ray analysis (Mori, Saito & Watanabe, 1961; Bertrand, 1967; Kilbourn & Dunitz, 1967; Jain & Lingafelter, 1967).

For nickel(II), the structure of a low spin trigonal bipyramidal complex has been recently published (Stevenson & Dahl, 1967). Ni(Me₆tren)Br₂ is the only case of this type of configuration so far reported for a high spin nickel(II) complex.

We wish to thank Dr Ciampolini for supplying crystals of the compounds. Thanks are expressed to Professor L. Sacconi for his continuous interest. The financial support of the Italian Consiglio Nazionale delle Ricerche is gratefully acknowledged.

References

BERTRAND, J. A. (1967). Inorg. Chem. 6, 495.

- CIAMPOLINI, M. & NARDI, N. (1966a). Inorg. Chem. 5, 41.
- CIAMPOLINI, M. & NARDI, N. (1966b). Inorg. Chem. 5, 1150.
- DI VAIRA, M. & ORIOLI, P. L. (1967). Inorg. Chem. 6, 955. JAIN, P. C. & LINGAFELTER, E. C. (1967). J. Amer. Chem.
- Soc. 89, 724.
- KILBOURN, B. T. & DUNITZ, J. D. (1967). *Inorg. Chim. Acta* 1, 209.
- MORI, M., SAITO, Y. & WATANABE, T. (1961). Bull. Chem. Soc. Japan, 34, 295.
- RASMUSSEN, S. E. (1959). Acta Chem. Scand. 13, 2009.
- STEVENSON, D. L. & DAHL, L. F. (1967). J. Amer. Chem. Soc. 89, 3424.
- STEWART, J. M. (1964). Technical Report TR-64-6. Univ. of Maryland, Computer Science Center.

Acta Cryst. (1968). B 24, 599

The structure of poly-L-proline II. By STRUTHER ARNOTT and S. DAVID DOVER, Medical Research Council Biophysics Research Unit and Department of Biophysics, King's College, 26–29, Drury Lane, London, W. C.2, England

(Received 22 July 1967)

The crystal structure of poly-L-proline II (space group $P3_2$, a=6.62, c=9.31 Å (e.s.d.'s 0.01 Å) and three prolyl residues per unit cell) has been reappraised. Two crystal models have been considered: in the first the threefold helical molecules at each lattice point are all parallel; in the second there are two half coaxial antiparallel chains at each molecular site (such an arrangement corresponds to a statistical crystal structure in which each site is occupied, with equal probability, by up- and down-pointing chains). Refined molecular conformation and packing parameters have been obtained for both models by a least-squares method in which bond lengths and angles are constrained to have values in agreement with single-crystal analyses. The refined *non-statistical* model (with standard conformational angles $\varphi = 99.8^\circ$, $\psi = -95.1^\circ$, $\omega = -0.4^\circ$) provides a markedly better fit with the X-ray intensities and is preferred also on stereochemical grounds.

Cowan & McGavin (1955) analysed the X-ray diffraction from doubly oriented films of poly-L-proline II and found a trigonal unit cell, space group $P3_2$, with a=6.62, c=9.36 Å (we find a=6.62, c=9.31 Å both with e.s.d. 0.01 Å). They concluded also that the three prolyl residues in each unit cell were in a single molecule related by the same lefthanded screw triad as the space group. Sasisekharan (1959) published a similar molecular model and from consideration of intermolecular contacts and optical transforms decided the radius vector of one α C made an angle, ψ , between 30° and 35° , with **a**. Burge, Harrison & McGavin (1962) determined ψ to be $40\pm2^{\circ}$ by examining the variation of R with ψ . A feature of both crystal models is a short (2.80 Å) γ C···O contact between molecules which might be a CH···O hydrogen bond.

We have refined the crystal structure of poly-L-proline II using powder diffraction data and the linked-atom method of Arnott & Wonacott (1966a). In this method bond lengths and angles can be kept fixed at standard values while the variables are the chain dihedral angles (τ) , the radius of αC (D) and the Eulerian angles $(\theta_x, \theta_y, \theta_z)$ which determine the chain orientation. Additional parameters are the scale (K), the average isotropic temperature factor (B) and the molecular orientation (ψ). By those means the number and kind of variables is rendered appropriate to the paucity (only fifteen in this case) and low resolving power of intensity data given by the polymer. The function minimized in a least-squares fashion was

Θ

$$= \Phi + \sum_{h} \lambda_{h} G_{h} \tag{1}$$

where

$$\Phi = \sum_{m} \omega_m \{ {}_oF_m - (1/K)_cF_m \exp\left(-B\varrho^2/4\right) \}^2$$
(2)

and λ_h is the Lagrange multiplier appropriate to the constraint, $G_h = 0$ to be imposed on the solution. Six equations, $G_h = 0$, involving some of the cylindrical polar atomic coordinates with

$$\begin{array}{ll} G_1 = R(1) - R(7) \,, & G_2 = \varphi(1) - \varphi(7) + 120^\circ \,, \\ G_3 = Z(1) - Z(7) - c/3 \,, & G_4 = R(4) - R(7a) \,, \\ G_5 = Z(4) - Z(7a) - c/3 \,, & G_6 = Z(5) - Z(8) - c/3 \,, \end{array}$$

were used so that all prolyl residues were joined appropriately in a left-handed threefold helix of pitch equal to c. (The atom numbering key is in Fig. 1.)

We have also considered another possible crystal model to determine if poly-L-proline has a statistical crystal structure like other polypeptides such as α -poly-L-alanine (Elliott & Malcolm, 1959; Arnott & Wonacott, 1966b) and β -poly-L-alanine (Arnott, Dover & Elliott, 1967). The second model has two half (coaxial) molecules at each lattice point, the half molecules having -CO.NH.CH = sequences of opposite sense. For such a model two more parameters are